光合毒理学分析揭示花椒叶浸提液对莱茵衣藻的化感效应机制
##plugins.pubIds.doi.readerDisplayName##:
https://doi.org/10.70693/cjst.v1i1.662关键词:
花椒叶浸提液;非靶向代谢组;叶绿素荧光;抑藻剂;莱茵衣藻摘要
摘要: 花椒(Zanthoxylum bungeanum)作为我国传统药食同源植物,其果实因富含挥发油、生物碱及黄酮类成分而广泛应用于食品与医药领域,但花椒叶作为采收副产物长期面临资源浪费与环境污染问题。为挖掘花椒叶潜在应用价值,本研究聚焦花椒叶次级代谢产物组成及其对水生初级生产者莱茵衣藻(Chlamydomonas reinhardtii)的化感效应。通过非靶向代谢组学技术分析花椒叶浸提液化学成分,发现其主要含酚酸类与黄酮类化合物,其中黄酮类化合物组分占比显著。结合急性毒理实验与叶绿素荧光技术,发现添加0.5 mg/L与1.0 mg/L花椒叶浸提液的藻细胞Fv/Fm值分别较对照组降低了8.32%和60.50%,表明不同剂量浸提液对莱茵衣藻光合功能的浓度依赖性抑制效应。进一步机制研究表明,花椒叶浸提液处理破坏了藻株放氧复合体的结构,影响了能量的捕获和分配,抑制了光合电子的传递效率。本研究为化感抑藻剂的开发提供理论依据与数据支撑,并在水体生态修复方面具有广阔的应用前景。
基金项目: 聊城市重点研发计划(2024YD01),聊城大学大学生创新创业训练计划项目(CXCY347)。
参考
吴 振, 李 红, 杨 勇, 等. 基于无机元素的花椒产地溯源和品种聚类分析[J]. 食品科学, 2019, 40(16): 213-219.
García-Díez J, Alheiro J, Pinto A L, et al. Synergistic activity of essential oils from herbs and spices used on meat products against food borne pathogens[J]. Natural Product Communications, 2017, 12(2): 1934578X1701200236. DOI: https://doi.org/10.1177/1934578X1701200236
Xie J, Xiong S, Li Y, et al. Phenolic acids from medicinal and edible homologous plants: A potential anti-inflammatory agent for inflammatory diseases[J]. Frontiers in Immunology, 2024, 15: 1345002. DOI: https://doi.org/10.3389/fimmu.2024.1345002
Xu Z Y, Hu Z, La C S, et al. Hydroxyl-amide alkaloids from pepper roots: potential sources of natural antioxidants and tyrosinase inhibitors[J]. Journal of Agricultural and Food Chemistry, 2024, 72(36): 19800-19811. DOI: https://doi.org/10.1021/acs.jafc.4c03650
Bao Y, Yang L, Fu Q, et al. The current situation of Zanthoxylum bungeanum industry and the research and application prospect. A review[J]. Fitoterapia, 2023, 164: 105380. DOI: https://doi.org/10.1016/j.fitote.2022.105380
Aziz N S, Sofian‐Seng N S, Mohd Razali N S, et al. A review on conventional and biotechnological approaches in white pepper production[J]. Journal of the Science of Food and Agriculture, 2019, 99(6): 2665-2676. DOI: https://doi.org/10.1002/jsfa.9481
Pessoa J S, Silva B G, Júnior E D F, et al. Cultivation strategies to improve Chlamydomonas reinhardtii growth and recombinant mcherry expression[J]. Journal of Basic Microbiology, 2025: e70006. DOI: https://doi.org/10.1002/jobm.70006
Catalan R E, Fragkopoulos A A, Girot A, et al. Preparation, maintenance and propagation of synchronous cultures of photoactive Chlamydomonas cells[J]. Nature Protocols, 2025: 1-26. DOI: https://doi.org/10.1038/s41596-024-01135-3
Gorman D S, Levine R P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi[J]. Proceedings of the National Academy of Sciences, 1965, 54(6): 1665-1669. DOI: https://doi.org/10.1073/pnas.54.6.1665
Cheng J, Tan L, Lu X, et al. Photosynthetic Toxicological effects of organic extracts from Zanthoxylum bungeanum leaves on controlling the Microcystis aeruginosa Blooms[J]. Current Microbiology, 2025, 82(1): 1-12. DOI: https://doi.org/10.1007/s00284-024-04026-8
Anbazhakan K, Sadasivam K, Praveena R, et al. Target prediction and antioxidant analysis on isoflavones of demethyltexasin: A DFT study[J]. Journal of Molecular Modeling, 2019, 25: 1-10. DOI: https://doi.org/10.1007/s00894-019-4045-0
Li X, Jiang Q, Wang T, et al. Comparison of the antioxidant effects of quercitrin and isoquercitrin: Understanding the role of the 6’-OH group[J]. Molecules, 2016, 21(9): 1246. DOI: https://doi.org/10.3390/molecules21091246
Zaragozá C, Monserrat J, Mantecón C, et al. Binding and antiplatelet activity of quercetin, rutin, diosmetin, and diosmin flavonoids[J]. Biomedicine & pharmacotherapy, 2021, 141: 111867. DOI: https://doi.org/10.1016/j.biopha.2021.111867
Boisnic S, Branchet M C, Quioc-Salomon B, et al. Anti-Inflammatory and Antioxidant Effects of Diosmetin-3-O-β-d-Glucuronide, the Main Metabolite of Diosmin: Evidence from Ex Vivo Human Skin Models[J]. Molecules, 2023, 28(14): 5591. DOI: https://doi.org/10.3390/molecules28145591
Zargar S, Alamery S, Bakheit A H, et al. Poziotinib and bovine serum albumin binding characterization and influence of quercetin, rutin, naringenin and sinapic acid on their binding interaction[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 235: 118335. DOI: https://doi.org/10.1016/j.saa.2020.118335
Choi S S, Park H R, Lee K A. A comparative study of rutin and rutin glycoside: Antioxidant activity, anti-inflammatory effect, effect on platelet aggregation and blood coagulation[J]. Antioxidants, 2021, 10(11): 1696. DOI: https://doi.org/10.3390/antiox10111696
Liang Y, Hou D, Ni Z, et al. Preparation, characterization of naringenin, β-cyclodextrin and carbon quantum dot antioxidant nanocomposites[J]. Food Chemistry, 2022, 375: 131646. DOI: https://doi.org/10.1016/j.foodchem.2021.131646
Wang Q, Xiao L. Isochlorogenic acid A attenuates acute lung injury induced by LPS via Nf-κB/NLRP3 signaling pathway[J]. American Journal of Translational Research, 2019, 11(11): 7018.
Tie F, Ding J, Gao Y, et al. Chlorogenic Acid and its Isomers Attenuate NAFLD by Mitigating Lipid Accumulation in Oleic Acid‐Induced HepG2 Cells and High-Fat Diet-Fed Zebrafish[J]. Chemistry & Biodiversity, 2024, 21(7): e202400564. DOI: https://doi.org/10.1002/cbdv.202400564
Kai K, Wang R, Bi W, et al. Chlorogenic acid induces ROS-dependent apoptosis in Fusarium fujikuroi and decreases the postharvest rot of cherry tomato[J]. World Journal of Microbiology and Biotechnology, 2021, 37: 1-9. DOI: https://doi.org/10.1007/s11274-021-03062-x
晏娅蓉,高亚敏,廖 娟, 等. 花椒叶提取物对大肠杆菌与金黄色葡萄球菌的抑制作用探究[J]. 智慧农业导刊, 2022, 22: 37-42.
##submission.downloads##
已出版
##submission.howToCite##
期
栏目
##submission.license##
##submission.copyrightStatement##
##submission.license.cc.by4.footer##