坏死性凋亡在糖尿病性创面愈合中的研究进展
DOI:
https://doi.org/10.70693/cjmsr.v1i1.688Keywords:
糖尿病性创面;坏死性凋亡;相关蛋白;研究进展Abstract
糖尿病作为临床常见的慢性代谢性疾病,其显著特征为长期的高血糖状态,这一病理条件可引发生化反应的连锁变化,进而累及全身多个系统和器官。在众多并发症中,糖尿病所导致的创面问题以其高发性和难治性而备受关注,糖尿病创面通常表现为皮肤溃疡、感染反复发作以及组织坏死等临床特征。若得不到及时有效的治疗,严重者可致残,甚至引发脓毒血症等危及生命的并发症。因而,探寻有效方法以提升糖尿病性创面的治愈率,已成为亟待攻克的医学难题。坏死性凋亡作为一种新兴发现的细胞程序性死亡途径,能够参与并调控多种炎症反应过程。近年来的研究成果显示,坏死性凋亡在糖尿病的发病进程中扮演了关键角色,尤其在糖尿病性创面愈合方面,发挥着至关重要的作用。本文通过探讨坏死性凋亡与创面相关蛋白的研究及其在糖尿病性创面愈合中的作用机制,旨在为相关领域的研究人员提供参考和启示,为糖尿病性创面愈合治疗的进一步发展提供借鉴。
References
HONG S, POUYA S, SUVI K, et al. IDF diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 [J]. Diabetes research and clinical practice, 2021, (prepublish): 109119-.
HIMANI N. Necroptosis in anti-viral inflammation [J]. Cell death and differentiation, 2019, 26(1): 4-13.
KERR J F, WYLLIE A H, CURRIE A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer, 1972, 26(4): 239-57.
KA-MING C F, JOANNA S, G B J, et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses [J]. The Journal of biological chemistry, 2003, 278(51): 51613-21.
靳贺超, 顾悦, 张圆圆, et al. 细胞焦亡与坏死性凋亡在糖尿病肾病中的作用及中医药干预研究进展 [J]. 中国实验方剂学杂志, 2022, 28(03): 58-67.
ZHU T, WU B W. Recognition of necroptosis: From molecular mechanisms to detection methods [J]. Biomed Pharmacother, 2024, 178: 117196.
YAO K, SHI Z, ZHAO F, et al. RIPK1 in necroptosis and recent progress in related pharmaceutics [J]. Front Immunol, 2025, 16: 1480027.
CHEN Y, LI X, HUA Y, et al. RIPK3-Mediated Necroptosis in Diabetic Cardiomyopathy Requires CaMKII Activation [J]. Oxid Med Cell Longev, 2021, 2021: 6617816.
PANG H, HUANG G, XIE Z, et al. The role of regulated necrosis in diabetes and its complications [J]. Journal of molecular medicine (Berlin, Germany), 2024, 102(4): 495-505.
NIU L, YANG P, ZHU B, et al. Inhibition of the RIP3/MLKL/TRPM7 necroptotic pathway ameliorates diabetes mellitus-induced erectile dysfunction by reducing cell death, fibrosis, and inflammation [J]. Front Pharmacol, 2024, 15: 1436013.
F B. Tumour necrosis factor and cancer [J]. Nature reviews Cancer, 2009, 9(5): 361-71.
胡永, 陈一兴, 杜世锁, 等. 肿瘤坏死因子α在肝细胞癌中的研究进展 [J]. 中国临床医学, 2024, 31(2): 257-61.
王鑫, 吾布力卡斯木·米吉提, 黄金勇,等. 肿瘤坏死因子α对骨组织细胞的调节 [J]. 中国组织工程研究, 2024, 28(21): 3400-6.
GHORBANINEZHAD F, LEONE P, ALEMOHAMMAD H, et al. Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review) [J]. Int J Mol Med, 2022, 49(4).
莫念, 张雅婷, 张骏鸿, 等. 肿瘤坏死因子受体2在银屑病中的研究进展 [J]. 重庆医学, 2024, 53(15): 2370-5.
CHEN T K, COCA S G, ESTRELLA M M, et al. Longitudinal TNFR1 and TNFR2 and Kidney Outcomes: Results from AASK and VA NEPHRON-D [J]. J Am Soc Nephrol, 2022, 33(5): 996-1010.
张惠玲. EGFR--TNFR1信号通路在急性肺损伤肺血管内皮损伤中的研究 [D], 2023.
LUCAS R, HADIZAMANI Y, ENKHBAATAR P, et al. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance [J]. Front Physiol, 2021, 12: 793251.
ZHANG W, WU H, LIAO Y, et al. Caspase family in autoimmune diseases [J]. Autoimmunity reviews, 2024, 24(2): 103714.
NEWTON K, WICKLIFFE K E, DUGGER D L, et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis [J]. Nature, 2019, 574(7778): 428-31.
ZHANG B, ORNING P, LEHMAN J W, et al. Raver1 links Ripk1 RNA splicing to caspase-8-mediated pyroptotic cell death, inflammation, and pathogen resistance [J]. Proc Natl Acad Sci U S A, 2025, 122(7): e2420802122.
YANG L, WEN Y, YUAN Z, et al. Hypoxia-mediated SUMOylation of FADD exacerbates endothelial cell injury via the RIPK1-RIPK3-MLKL signaling axis [J]. Cell Death Dis, 2025, 16(1): 121.
GUPTA S, LOPEZ M A, EKTESABI A M, et al. Caspase-8: Arbitrating Life and Death in the Innate Immune System [J]. Cells, 2025, 14(4).
FRITSCH M, GüNTHER S D, SCHWARZER R, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis [J]. Nature, 2019, 575(7784): 683-7.
PIAO X, BYUN H S, LEE S R, et al. 8-Geranylumbelliferone isolated from Paramignya trimera triggers RIPK1/RIPK3-dependent programmed cell death upon TNFR1 ligation [J]. Biochem Pharmacol, 2021, 192: 114733.
JIYI P. The role of caspase-8 in inflammatory signalling and pyroptotic cell death [J]. Seminars in immunology, 2023, 70: 101832.
PANG J, VINCE J E. The role of caspase-8 in inflammatory signalling and pyroptotic cell death [J]. Semin Immunol, 2023, 70: 101832.
C.R. H. The web of death: the expanding complexity of necroptotic signaling [J]. Trends in Cell Biology, 2023, 33(2): 162-74.
MORGAN M J, KIM Y S. RIPK3 in Necroptosis and Cancer [J]. Mol Cells, 2025: 100199.
TING Z. Recognition of necroptosis: From molecular mechanisms to detection methods [J]. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2024, 178: 117196.
HAIPENG P. The role of regulated necrosis in diabetes and its complications [J]. Journal of molecular medicine (Berlin, Germany), 2024, 102(4): 495-505.
TING C. MLKL-mediated necroptosis is a target for cardiac protection in mouse models of type-1 diabetes [J]. Cardiovascular diabetology, 2022, 21(1): 165.
KATE E L. Gasdermin and MLKL necrotic cell death effectors: Signaling and diseases [J]. Immunity, 2024, 57(3): 429-45.
魏敏, 闫言, 李莉, 等. 受体相互作用蛋白1和受体相互作用蛋白3在细胞信号转导通路中的作用 [J]. 医学综述, 2021, 27(16): 3154-9.
杜明威, 朱信霖, 廖万清, 等. 中西医治疗糖尿病足溃疡的研究现状 [J]. 中国皮肤性病学杂志, 2024, 38(02): 128-33.
郭瑞, 彭会珍, 浦仕彪, 等. 糖尿病足溃疡难愈性创面的相关研究进展 [J]. 云南民族大学学报(自然科学版), 2024, 33(03): 325-34+76.
DAN L. 651 NLRP3 Activation Induced by Neutrophil Extracellular Traps Sustains Inflammatory Response in the Diabetic Wound [J]. Journal of Burn Care & Research, 2020, 41(Supplement1): S171-S2.
FU S P, CHEN S Y, PANG Q M, et al. Advances in the research of the role of macrophage/microglia polarization-mediated inflammatory response in spinal cord injury [J]. Front Immunol, 2022, 13: 1014013.
ENDONG Z, PHILANA P, ZONGMIN Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances [J]. Acta Pharmaceutica Sinica B, 2023, 13(5): 1789-827.
RAI V, MOELLMER R, AGRAWAL D K. The role of CXCL8 in chronic nonhealing diabetic foot ulcers and phenotypic changes in fibroblasts: a molecular perspective [J]. Molecular Biology Reports, 2022, 49(2): 1-8.
王宁, 鞠上. 糖尿病足溃疡难愈合机制研究进展 [J]. 中华烧伤与创面修复杂志, 2022, 38(11): 1085-9.
李杰辉, 梁彬, 王丽. 巨噬细胞极化在糖尿病性创面愈合中的作用及药物研究进展 [J]. 药学研究, 2023, 42(12): 1010-5.
LANG J, YANG C, LIU L, et al. High glucose activates ERK1/2 to stabilize AP1 and increase MMP9 expression in diabetic foot ulcers [J]. Exp Cell Res, 2021, 403(1): 112550.
XIAO-YAN C. Anti-inflammatory action of geniposide promotes wound healing in diabetic rats [J]. Pharmaceutical biology, 2022, 60(1): 294-9.
ASIF M, YOUSAF H M, SALEEM M, et al. Raphanus sativus Seeds Oil Arrested in vivo Inflammation and Angiogenesis through Down-regulation of TNF-α [J]. Curr Pharm Biotechnol, 2022, 23(5): 728-39.
SONG-YI L. Casein kinase-1γ1 and 3 stimulate tumor necrosis factor-induced necroptosis through RIPK3 [J]. Cell death & disease, 2019, 10(12): 923.
GITLIN A D, HEGER K, SCHUBERT A F, et al. Integration of innate immune signalling by caspase-8 cleavage of N4BP1 [J]. Nature, 2020, 587(7833): 275-80.
李丽, 曹明明. 坏死性凋亡与糖尿病及慢性微血管并发症关系的研究进展 [J]. 国际内分泌代谢杂志, 2023, 43(3): 233-6.
XU H, DU X, LIU G, et al. The pseudokinase MLKL regulates hepatic insulin sensitivity independently of inflammation [J]. Mol Metab, 2019, 23: 14-23.
ZHOU X, XIE L, XIA L, et al. RIP3 attenuates the pancreatic damage induced by deletion of ATG7 [J]. Cell Death Dis, 2017, 8(7): e2918.
张建忠. Necroptosis在糖尿病肾组织炎症及间质纤维化中作用的初步研究 [D], 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 丁艺 (作者)

This work is licensed under a Creative Commons Attribution 4.0 International License.