M2型巨噬细胞在胶质母细胞瘤中代谢机制和临床管理

M2型巨噬细胞在胶质母细胞瘤中代谢机制和临床管理

Authors

  • 马晨诚 +86 18342652101
  • 束汉生 蚌埠医科大学第二附属医院
  • 朱叶山 蚌埠医科大学第二附属医院
  • 余德 蚌埠医科大学第二附属医院
  • 王涛 蚌埠医科大学第二附属医院
  • 张怡锋 蚌埠医科大学第二附属医院
  • 程哲 蚌埠医科大学第二附属医院
  • 王一冰 复旦大学附属金山医院
  • 吴祥元 天长市中医院

DOI:

https://doi.org/10.70693/cjmsr.v1i1.600

Keywords:

极化;增殖;信号

Abstract

胶质母细胞瘤是一种棘手的神经系统恶性肿瘤,由于其较高的侵袭性、异质性、代谢率,患者中位生存期通常只有12~15个月。在胶质瘤中,肿瘤相关巨噬细胞甚至占到30%~50%,先前研究表明,巨噬细胞极化为M1表型巨噬细胞 (经典激活巨噬细胞)和M2表型巨噬细胞 (替代激活巨噬细胞)。后者多具有促进肿瘤生长的作用。通过加入细胞因子改变肿瘤微环境,促进M2型肿瘤相关巨噬细胞向M1型巨噬细胞转化是当前治疗的一种策略。近年研究发现肿瘤细胞和微环境通过调控基因信号通路参与巨噬细胞向M2型极化的过程。处于不同的微环境下巨噬细胞的行为和物质代谢得以揭示,临床试验也取得许多进展,运用纳米技术作为药物载体来进入到传统手术无法切除的游离肿瘤细胞,基因编辑肿瘤细胞,采用光动力疗法传递药物,靶向治疗的基础上采用多种方法联合治疗,从而延长患者生存期。文章综述了M2巨噬细胞在胶质瘤中的代谢机制,并分析相关临床研究,为今后基础研究和临床治疗提供方向。

References

Zhang, H., et al., DNAJC1 facilitates glioblastoma progression by promoting extracellular matrix reorganization and macrophage infiltration. J Cancer Res Clin Oncol, 2024. 150(6): p. 315. DOI: https://doi.org/10.1007/s00432-024-05823-1

Chen, Z., et al., Hypoxia-induced TGFBI maintains glioma stem cells by stabilizing EphA2. Theranostics, 2024. 14(15): p. 5778-5792. DOI: https://doi.org/10.7150/thno.95141

Xue, Z., et al., Hypoxic glioma-derived exosomal miR-25-3p promotes macrophage M2 polarization by activating the PI3K-AKT-mTOR signaling pathway. J Nanobiotechnology, 2024. 22(1): p. 628. DOI: https://doi.org/10.1186/s12951-024-02888-5

Huang, S., et al., Exosomal miR-6733-5p mediates cross-talk between glioblastoma stem cells and macrophages and promotes glioblastoma multiform progression synergistically. CNS Neurosci Ther, 2023. 29(12): p. 3756-3773. DOI: https://doi.org/10.1111/cns.14296

Scafidi, A., et al., Metformin impacts the differentiation of mouse bone marrow cells into macrophages affecting tumour immunity. Heliyon, 2024. 10(18): p. e37792. DOI: https://doi.org/10.1016/j.heliyon.2024.e37792

Si, J., et al., Hypoxia-induced activation of HIF-1alpha/IL-1beta axis in microglia promotes glioma progression via NF-κB-mediated upregulation of heparanase expression. Biol Direct, 2024. 19(1): p. 45. DOI: https://doi.org/10.1186/s13062-024-00487-w

Liu, L., et al., Hypoxia-driven M2-polarized macrophages facilitate the epithelial-mesenchymal transition of glioblastoma via extracellular vesicles. Theranostics, 2024. 14(16): p. 6392-6408. DOI: https://doi.org/10.7150/thno.95766

Li, X., et al., Profiling hypoxia signaling reveals a lncRNA signature contributing to immunosuppression in high-grade glioma. Front Immunol, 2024. 15: p. 1471388. DOI: https://doi.org/10.3389/fimmu.2024.1471388

Xu, H., et al., Single-cell RNA sequencing identifies a subtype of FN1 + tumor-associated macrophages associated with glioma recurrence and as a biomarker for immunotherapy. Biomark Res, 2024. 12(1): p. 114. DOI: https://doi.org/10.1186/s40364-024-00662-1

Liu, Y., et al., Hypoxia-induced polypoid giant cancer cells in glioma promote the transformation of tumor-associated macrophages to a tumor-supportive phenotype. CNS Neurosci Ther, 2022. 28(9): p. 1326-1338. DOI: https://doi.org/10.1111/cns.13892

Zhu, T., et al., Prognostic value of lactate transporter SLC16A1 and SLC16A3 as oncoimmunological biomarkers associating tumor metabolism and immune evasion in glioma. Cancer Innov, 2022. 1(3): p. 229-239. DOI: https://doi.org/10.1002/cai2.32

Yang, D.Y., et al., Granulocyte-macrophage colony stimulating factor enhances efficacy of nimustine rendezvousing with temozolomide plus irradiation in patients with glioblastoma. Technol Health Care, 2023. 31(2): p. 635-645. DOI: https://doi.org/10.3233/THC-220194

Geletneky, K., et al., Oncolytic H-1 Parvovirus Shows Safety and Signs of Immunogenic Activity in a First Phase I/IIa Glioblastoma Trial. Mol Ther, 2017. 25(12): p. 2620-2634. DOI: https://doi.org/10.1016/j.ymthe.2017.08.016

Batich, K.A., et al., Long-term Survival in Glioblastoma with Cytomegalovirus pp65-Targeted Vaccination. Clin Cancer Res, 2017. 23(8): p. 1898-1909. DOI: https://doi.org/10.1158/1078-0432.CCR-16-2057

van den Bossche, W.B.L., et al., Oncolytic virotherapy in glioblastoma patients induces a tumor macrophage phenotypic shift leading to an altered glioblastoma microenvironment. Neuro Oncol, 2018. 20(11): p. 1494-1504. DOI: https://doi.org/10.1093/neuonc/noy082

Reale, A., et al., An oncolytic HSV-1 vector induces a therapeutic adaptive immune response against glioblastoma. J Transl Med, 2024. 22(1): p. 862. DOI: https://doi.org/10.1186/s12967-024-05650-5

Bommareddy, P.K., et al., Oncolytic herpes simplex virus expressing IL-2 controls glioblastoma growth and improves survival. J Immunother Cancer, 2024. 12(4). DOI: https://doi.org/10.1136/jitc-2024-008880

Koruga, N., et al., IMPACT OF NEUROTROPIC VIRUSES ON SURVIVAL OF PATIENTS WITH SURGICALLY TREATED GLIOBLASTOMA. Acta Clin Croat, 2022. 61(3): p. 476-481. DOI: https://doi.org/10.20471/acc.2022.61.03.12

Guerra, G., et al., Antibodies to varicella-zoster virus and three other herpesviruses and survival in adults with glioma. Neuro Oncol, 2023. 25(6): p. 1047-1057. DOI: https://doi.org/10.1093/neuonc/noac283

Qiu, H., et al., HMGB1/TREM2 positive feedback loop drives the development of radioresistance and immune escape of glioblastoma by regulating TLR4/Akt signaling. J Transl Med, 2024. 22(1): p. 688. DOI: https://doi.org/10.1186/s12967-024-05489-w

Yang, Y., et al., The CEBPB(+) glioblastoma subcluster specifically drives the formation of M2 tumor-associated macrophages to promote malignancy growth. Theranostics, 2024. 14(10): p. 4107-4126. DOI: https://doi.org/10.7150/thno.93473

Ni, B., et al., The short isoform of MS4A7 is a novel player in glioblastoma microenvironment, M2 macrophage polarization, and tumor progression. J Neuroinflammation, 2023. 20(1): p. 80. DOI: https://doi.org/10.1186/s12974-023-02766-1

Bao, L. and X. Li, MicroRNA-32 targeting PTEN enhances M2 macrophage polarization in the glioma microenvironment and further promotes the progression of glioma. Mol Cell Biochem, 2019. 460(1-2): p. 67-79. DOI: https://doi.org/10.1007/s11010-019-03571-2

Wei, Q.T., et al., Exosome-mediated transfer of MIF confers temozolomide resistance by regulating TIMP3/PI3K/AKT axis in gliomas. Mol Ther Oncolytics, 2021. 22: p. 114-128. DOI: https://doi.org/10.1016/j.omto.2021.08.004

Ha, W., et al., Ibudilast sensitizes glioblastoma to temozolomide by targeting Macrophage Migration Inhibitory Factor (MIF). Sci Rep, 2019. 9(1): p. 2905. DOI: https://doi.org/10.1038/s41598-019-39427-4

Ji, H., et al., IL-18, a therapeutic target for immunotherapy boosting, promotes temozolomide chemoresistance via the PI3K/AKT pathway in glioma. J Transl Med, 2024. 22(1): p. 951. DOI: https://doi.org/10.1186/s12967-024-05755-x

Peres, N., et al., Profiling of Tumor-Infiltrating Immune Cells and Their Impact on Survival in Glioblastoma Patients Undergoing Immunotherapy with Dendritic Cells. Int J Mol Sci, 2024. 25(10). DOI: https://doi.org/10.3390/ijms25105275

Du, R., et al., Glioblastoma Phagocytic Cell Death: Balancing the Opportunities for Therapeutic Manipulation. Cells, 2024. 13(10). DOI: https://doi.org/10.3390/cells13100823

Wu, M., et al., Exosome-transmitted podoplanin promotes tumor-associated macrophage-mediated immune tolerance in glioblastoma. CNS Neurosci Ther, 2024. 30(3): p. e14643. DOI: https://doi.org/10.1111/cns.14643

Xing, J., et al., Examining the function of macrophage oxidative stress response and immune system in glioblastoma multiforme through analysis of single-cell transcriptomics. Front Immunol, 2023. 14: p. 1288137. DOI: https://doi.org/10.3389/fimmu.2023.1288137

Zhang, C., et al., MS4A6A is a new prognostic biomarker produced by macrophages in glioma patients. Front Immunol, 2022. 13: p. 865020. DOI: https://doi.org/10.3389/fimmu.2022.865020

Zhang, H., et al., PTX3 mediates the infiltration, migration, and inflammation-resolving-polarization of macrophages in glioblastoma. CNS Neurosci Ther, 2022. 28(11): p. 1748-1766. DOI: https://doi.org/10.1111/cns.13913

Sørensen, M.D. and B.W. Kristensen, Tumour-associated CD204(+) microglia/macrophages accumulate in perivascular and perinecrotic niches and correlate with an interleukin-6-enriched inflammatory profile in glioblastoma. Neuropathol Appl Neurobiol, 2022. 48(2): p. e12772. DOI: https://doi.org/10.1111/nan.12772

Kemmerer, C.L., et al., Cerebrospinal fluid cytokine levels are associated with macrophage infiltration into tumor tissues of glioma patients. BMC Cancer, 2021. 21(1): p. 1108. DOI: https://doi.org/10.1186/s12885-021-08825-1

Xu, S., et al., CD74 Correlated With Malignancies and Immune Microenvironment in Gliomas. Front Mol Biosci, 2021. 8: p. 706949. DOI: https://doi.org/10.3389/fmolb.2021.706949

Xiao, Y., et al., CD44-Mediated Poor Prognosis in Glioma Is Associated With M2-Polarization of Tumor-Associated Macrophages and Immunosuppression. Front Surg, 2021. 8: p. 775194. DOI: https://doi.org/10.3389/fsurg.2021.775194

Gholamin, S., et al., Irradiation or temozolomide chemotherapy enhances anti-CD47 treatment of glioblastoma. Innate Immun, 2020. 26(2): p. 130-137. DOI: https://doi.org/10.1177/1753425919876690

Malo, C.S., et al., Non-equivalent antigen presenting capabilities of dendritic cells and macrophages in generating brain-infiltrating CD8 (+) T cell responses. Nat Commun, 2018. 9(1): p. 633. DOI: https://doi.org/10.1038/s41467-018-03037-x

Annovazzi, L., et al., Microglia immunophenotyping in gliomas. Oncol Lett, 2018. 15(1): p. 998-1006.

Achyut, B.R., et al., Canonical NFκB signaling in myeloid cells is required for the glioblastoma growth. Sci Rep, 2017. 7(1): p. 13754. DOI: https://doi.org/10.1038/s41598-017-14079-4

An, W., et al., High expression of SIGLEC7 may promote M2-type macrophage polarization leading to adverse prognosis in glioma patients. Front Immunol, 2024. 15: p. 1411072. DOI: https://doi.org/10.3389/fimmu.2024.1411072

Ye, W., et al., NDC80/HEC1 promotes macrophage polarization and predicts glioma prognosis via single-cell RNA-seq and in vitro experiment. CNS Neurosci Ther, 2024. 30(7): p. e14850. DOI: https://doi.org/10.1111/cns.14850

Wang, J., et al., CLEC7A regulates M2 macrophages to suppress the immune microenvironment and implies poorer prognosis of glioma. Front Immunol, 2024. 15: p. 1361351. DOI: https://doi.org/10.3389/fimmu.2024.1361351

Zheng, W., et al., The role of ST3GAL4 in glioma malignancy, macrophage infiltration, and prognostic outcomes. Heliyon, 2024. 10(9): p. e29829. DOI: https://doi.org/10.1016/j.heliyon.2024.e29829

Huang, L., et al., PVT1 promotes proliferation and macrophage immunosuppressive polarization through STAT1 and CX3CL1 regulation in glioblastoma multiforme. CNS Neurosci Ther, 2024. 30(1): p. e14566. DOI: https://doi.org/10.1111/cns.14566

Xia, J., et al., Comprehensive analysis to identify the relationship between CALD1 and immune infiltration in glioma. Transl Cancer Res, 2024. 13(7): p. 3354-3369. DOI: https://doi.org/10.21037/tcr-24-216

You, G., et al., scRNA-seq and proteomics reveal the distinction of M2-like macrophages between primary and recurrent malignant glioma and its critical role in the recurrence. CNS Neurosci Ther, 2023. 29(11): p. 3391-3405. DOI: https://doi.org/10.1111/cns.14269

Zhang, Z., et al., FAM109B plays a tumorigenic role in low-grade gliomas and is associated with tumor-associated macrophages (TAMs). J Transl Med, 2024. 22(1): p. 833. DOI: https://doi.org/10.1186/s12967-024-05641-6

Ge, X., et al., TP53I13 promotes metastasis in glioma via macrophages, neutrophils, and fibroblasts and is a potential prognostic biomarker. Front Immunol, 2022. 13: p. 974346. DOI: https://doi.org/10.3389/fimmu.2022.974346

Sajjadi, S.F., N. Salehi, and M. Sadeghi, Comprehensive integrated single-cell RNA sequencing analysis of brain metastasis and glioma microenvironment: Contrasting heterogeneity landscapes. PLoS One, 2024. 19(7): p. e0306220. DOI: https://doi.org/10.1371/journal.pone.0306220

Kim, K.S., et al., MAPK/ERK signaling in gliomas modulates interferon responses, T cell recruitment, microglia phenotype, and immune checkpoint blockade efficacy. bioRxiv, 2024. DOI: https://doi.org/10.1101/2024.09.11.612571

Chouleur, T., et al., PTP4A2 Promotes Glioblastoma Progression and Macrophage Polarization under Microenvironmental Pressure. Cancer Res Commun, 2024. 4(7): p. 1702-1714. DOI: https://doi.org/10.1158/2767-9764.CRC-23-0334

Mistry, A.M., et al., Spatially Resolved Microglia/Macrophages in Recurrent Glioblastomas Overexpress Fatty Acid Metabolism and Phagocytic Genes. Curr Oncol, 2024. 31(3): p. 1183-1194. DOI: https://doi.org/10.3390/curroncol31030088

Kloosterman, D.J., et al., Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell, 2024. 187(19): p. 5336-5356.e30. DOI: https://doi.org/10.1016/j.cell.2024.07.030

Zhang, X., et al., Aggrephagy-related gene signature correlates with survival and tumor-associated macrophages in glioma: Insights from single-cell and bulk RNA sequencing. Math Biosci Eng, 2024. 21(2): p. 2407-2431. DOI: https://doi.org/10.3934/mbe.2024106

Pereira, M.B., et al., Transcriptional characterization of immunological infiltrates and their relation with glioblastoma patients overall survival. Oncoimmunology, 2018. 7(6): p. e1431083. DOI: https://doi.org/10.1080/2162402X.2018.1431083

Wang, Y., et al., Differences of macrophages in the tumor microenvironment as an underlying key factor in glioma patients. Front Immunol, 2022. 13: p. 1028937. DOI: https://doi.org/10.3389/fimmu.2022.1028937

Wang, L.J., Y. Xue, and Y. Lou, Tumor-associated macrophages related signature in glioma. Aging (Albany NY), 2022. 14(6): p. 2720-2735. DOI: https://doi.org/10.18632/aging.203968

Zhang, H., et al., The molecular feature of macrophages in tumor immune microenvironment of glioma patients. Comput Struct Biotechnol J, 2021. 19: p. 4603-4618. DOI: https://doi.org/10.1016/j.csbj.2021.08.019

Chen, X., et al., Single-cell RNA sequencing reveals intra-tumoral heterogeneity of glioblastoma and a pro-tumor subset of tumor-associated macrophages characterized by EZH2 overexpression. Biochim Biophys Acta Mol Basis Dis, 2022. 1868(12): p. 166534. DOI: https://doi.org/10.1016/j.bbadis.2022.166534

Müller, S., et al., Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol, 2017. 18(1): p. 234. DOI: https://doi.org/10.1186/s13059-017-1362-4

Ludwig, N., et al., Characterization of systemic immunosuppression by IDH mutant glioma small extracellular vesicles. Neuro Oncol, 2022. 24(2): p. 197-209. DOI: https://doi.org/10.1093/neuonc/noab153

Hu, C., et al., ATRX loss promotes immunosuppressive mechanisms in IDH1 mutant glioma. Neuro Oncol, 2022. 24(6): p. 888-900. DOI: https://doi.org/10.1093/neuonc/noab292

Wang, Q.W., et al., MET overexpression contributes to STAT4-PD-L1 signaling activation associated with tumor-associated, macrophages-mediated immunosuppression in primary glioblastomas. J Immunother Cancer, 2021. 9(10). DOI: https://doi.org/10.1136/jitc-2021-002451

Rao, G., et al., Anti-PD-1 Induces M1 Polarization in the Glioma Microenvironment and Exerts Therapeutic Efficacy in the Absence of CD8 Cytotoxic T Cells. Clin Cancer Res, 2020. 26(17): p. 4699-4712. DOI: https://doi.org/10.1158/1078-0432.CCR-19-4110

Geng, F. and D. Guo, Lipid droplets, potential biomarker and metabolic target in glioblastoma. Intern Med Rev (Wash D C), 2017. 3(5). DOI: https://doi.org/10.18103/imr.v3i5.443

Chen, T., et al., ALOX5 contributes to glioma progression by promoting 5-HETE-mediated immunosuppressive M2 polarization and PD-L1 expression of glioma-associated microglia/macrophages. J Immunother Cancer, 2024. 12(8). DOI: https://doi.org/10.1136/jitc-2024-009492

Zhong, Y., et al., Combinatorial targeting of glutamine metabolism and lysosomal-based lipid metabolism effectively suppresses glioblastoma. Cell Rep Med, 2024. 5(9): p. 101706. DOI: https://doi.org/10.1016/j.xcrm.2024.101706

Ye, Z., et al., PRL1 and PRL3 promote macropinocytosis via its lipid phosphatase activity. Theranostics, 2024. 14(9): p. 3423-3438. DOI: https://doi.org/10.7150/thno.93127

Tamas, C., et al., Metabolic Contrasts: Fatty Acid Oxidation and Ketone Bodies in Healthy Brains vs. Glioblastoma Multiforme. Int J Mol Sci, 2024. 25(10). DOI: https://doi.org/10.3390/ijms25105482

Yabo, Y.A., et al., Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. Genome Med, 2024. 16(1): p. 51. DOI: https://doi.org/10.1186/s13073-024-01321-8

Basheer, A.S., et al., Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel), 2021. 13(16). DOI: https://doi.org/10.3390/cancers13164226

Foray, C., et al., Interrogating Glioma-Associated Microglia and Macrophage Dynamics Under CSF-1R Therapy with Multitracer In Vivo PET/MRI. J Nucl Med, 2022. 63(9): p. 1386-1393. DOI: https://doi.org/10.2967/jnumed.121.263318

Urbantat, R.M., et al., Tumor-Associated Microglia/Macrophages as a Predictor for Survival in Glioblastoma and Temozolomide-Induced Changes in CXCR2 Signaling with New Resistance Overcoming Strategy by Combination Therapy. Int J Mol Sci, 2021. 22(20). DOI: https://doi.org/10.3390/ijms222011180

Zhai, K., et al., Pharmacological inhibition of BACE1 suppresses glioblastoma growth by stimulating macrophage phagocytosis of tumor cells. Nat Cancer, 2021. 2(11): p. 1136-1151. DOI: https://doi.org/10.1038/s43018-021-00267-9

Xu, X., et al., Impact of ferroptosis-related risk genes on macrophage M1/M2 polarization and prognosis in glioblastoma. Front Cell Neurosci, 2023. 17: p. 1294029. DOI: https://doi.org/10.3389/fncel.2023.1294029

Mou, Y., et al., Abundant expression of ferroptosis-related SAT1 is related to unfavorable outcome and immune cell infiltration in low-grade glioma. BMC Cancer, 2022. 22(1): p. 215. DOI: https://doi.org/10.1186/s12885-022-09313-w

Guo, Q., X. Xiao, and J. Zhang, MYD88 Is a Potential Prognostic Gene and Immune Signature of Tumor Microenvironment for Gliomas. Front Oncol, 2021. 11: p. 654388. DOI: https://doi.org/10.3389/fonc.2021.654388

Li, H., et al., Ferritin light chain promotes the reprogramming of glioma immune microenvironment and facilitates glioma progression. Theranostics, 2023. 13(11): p. 3794-3813. DOI: https://doi.org/10.7150/thno.82975

Ahluwalia, M.S., et al., Phase IIa Study of SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. J Clin Oncol, 2023. 41(7): p. 1453-1465. DOI: https://doi.org/10.1200/JCO.22.00996

Bota, D.A., et al., Phase 2 study of AV-GBM-1 (a tumor-initiating cell targeted dendritic cell vaccine) in newly diagnosed Glioblastoma patients: safety and efficacy assessment. J Exp Clin Cancer Res, 2022. 41(1): p. 344. DOI: https://doi.org/10.1186/s13046-022-02552-6

Rampling, R., et al., A Cancer Research UK First Time in Human Phase I Trial of IMA950 (Novel Multipeptide Therapeutic Vaccine) in Patients with Newly Diagnosed Glioblastoma. Clin Cancer Res, 2016. 22(19): p. 4776-4785. DOI: https://doi.org/10.1158/1078-0432.CCR-16-0506

Hou, X., et al., Gut microbiota mediated the individualized efficacy of Temozolomide via immunomodulation in glioma. J Transl Med, 2023. 21(1): p. 198. DOI: https://doi.org/10.1186/s12967-023-04042-5

Foray, C., et al., Imaging temozolomide-induced changes in the myeloid glioma microenvironment. Theranostics, 2021. 11(5): p. 2020-2033. DOI: https://doi.org/10.7150/thno.47269

Bota, D.A., et al., Phase II study of ERC1671 plus bevacizumab versus bevacizumab plus placebo in recurrent glioblastoma: interim results and correlations with CD4(+) T-lymphocyte counts. CNS Oncol, 2018. 7(3): p. Cns22. DOI: https://doi.org/10.2217/cns-2018-0009

Watson, S.S., et al., Fibrotic response to anti-CSF-1R therapy potentiates glioblastoma recurrence. Cancer Cell, 2024. 42(9): p. 1507-1527.e11. DOI: https://doi.org/10.1016/j.ccell.2024.08.012

Liu, R., et al., CircCDC45 promotes the malignant progression of glioblastoma by modulating the miR-485-5p/CSF-1 axis. BMC Cancer, 2021. 21(1): p. 1090. DOI: https://doi.org/10.1186/s12885-021-08803-7

Rao, R., et al., Glioblastoma genetic drivers dictate the function of tumor-associated macrophages/microglia and responses to CSF1R inhibition. Neuro Oncol, 2022. 24(4): p. 584-597. DOI: https://doi.org/10.1093/neuonc/noab228

Almahariq, M.F., et al., Inhibition of Colony-Stimulating Factor-1 Receptor Enhances the Efficacy of Radiotherapy and Reduces Immune Suppression in Glioblastoma. In Vivo, 2021. 35(1): p. 119-129. DOI: https://doi.org/10.21873/invivo.12239

Sielska, M., et al., Tumour-derived CSF2/granulocyte macrophage colony stimulating factor controls myeloid cell accumulation and progression of gliomas. Br J Cancer, 2020. 123(3): p. 438-448. DOI: https://doi.org/10.1038/s41416-020-0862-2

Shankarappa, P.S., et al., Cerebrospinal fluid penetration of the colony-stimulating factor-1 receptor (CSF-1R) inhibitor, pexidartinib. Cancer Chemother Pharmacol, 2020. 85(5): p. 1003-1007. DOI: https://doi.org/10.1007/s00280-020-04071-7

Sun, X., et al., Multicellular gene network analysis identifies a macrophage-related gene signature predictive of therapeutic response and prognosis of gliomas. J Transl Med, 2019. 17(1): p. 159. DOI: https://doi.org/10.1186/s12967-019-1908-1

Thomas, R.P., et al., Macrophage Exclusion after Radiation Therapy (MERT): A First in Human Phase I/II Trial using a CXCR4 Inhibitor in Glioblastoma. Clin Cancer Res, 2019. 25(23): p. 6948-6957. DOI: https://doi.org/10.1158/1078-0432.CCR-19-1421

Giordano, C., et al., Combining Magnetic Resonance Imaging with Systemic Monocyte Evaluation for the Implementation of GBM Management. Int J Mol Sci, 2021. 22(7). DOI: https://doi.org/10.3390/ijms22073797

Capper, D., et al., Biomarker and Histopathology Evaluation of Patients with Recurrent Glioblastoma Treated with Galunisertib, Lomustine, or the Combination of Galunisertib and Lomustine. Int J Mol Sci, 2017. 18(5). DOI: https://doi.org/10.3390/ijms18050995

Curry, W.T., Jr., et al., Vaccination with Irradiated Autologous Tumor Cells Mixed with Irradiated GM-K562 Cells Stimulates Antitumor Immunity and T Lymphocyte Activation in Patients with Recurrent Malignant Glioma. Clin Cancer Res, 2016. 22(12): p. 2885-96. DOI: https://doi.org/10.1158/1078-0432.CCR-15-2163

Chen, D., et al., MRI-derived radiomics assessing tumor-infiltrating macrophages enable prediction of immune-phenotype, immunotherapy response and survival in glioma. Biomark Res, 2024. 12(1): p. 14. DOI: https://doi.org/10.1186/s40364-024-00560-6

Christie, C., et al., Macrophages as a photosensitizer delivery system for photodynamic therapy: Potential for the local treatment of resected glioblastoma. Photodiagnosis Photodyn Ther, 2024. 45: p. 103897. DOI: https://doi.org/10.1016/j.pdpdt.2023.103897

Fan, Y., et al., SPI1-mediated MIR222HG transcription promotes proneural-to-mesenchymal transition of glioma stem cells and immunosuppressive polarization of macrophages. Theranostics, 2023. 13(10): p. 3310-3329. DOI: https://doi.org/10.7150/thno.82590

Miao, Y., et al., Anti-cancer effect of targeting fibroblast activation protein alpha in glioblastoma through remodeling macrophage phenotype and suppressing tumor progression. CNS Neurosci Ther, 2023. 29(3): p. 878-892. DOI: https://doi.org/10.1111/cns.14024

Chryplewicz, A., et al., Cancer cell autophagy, reprogrammed macrophages, and remodeled vasculature in glioblastoma triggers tumor immunity. Cancer Cell, 2022. 40(10): p. 1111-1127.e9. DOI: https://doi.org/10.1016/j.ccell.2022.08.014

Published

2025-03-19

How to Cite

马晨诚, 束汉生, 朱叶山, 余德, 王涛, 张怡锋, … 吴祥元. (2025). M2型巨噬细胞在胶质母细胞瘤中代谢机制和临床管理. 中国医学科学研究, 1(1), 28–39. https://doi.org/10.70693/cjmsr.v1i1.600
Loading...